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Abstract

For discretized linear periodic heating problems, the nodal temperatures at the end of a heating cycle must be a
linear function of those at the beginning of the same cycle and of any reservoirs with which the system exchanges heat.
If the matrix of coefficients defining this system of linear equations is determined, it can be applied sequentially to
advance through the transient response to the system without the need for direct numerical simulation of every cycle. It
also permits a direct solution for the nodal temperatures at an appropriate time during the steady periodic state.
Methods of determining the required matrices are discussed and the method is applied to a simple example. © 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many situations exist in which systems are subjected
to periodic heating and cooling. For example, during the
combustion cycle, the valves of an internal combustion
engine experience direct heating from the combusting
gases, cooling from intake air and periods of thermal
contact with the valve seat [1]. Other examples include
heat conduction in sliding solids [2], regenerative heat
exchangers [3], solar heating systems [4] and heat con-
duction between the workpiece and the die in repetitive
forming and rolling processes.

Transient behavior of such systems will consist of a
gradually evolving periodic perturbation superposed on
a long term trend which generally tends to a steady state.
In some cases interest will focus mainly on the steady
periodic solution, but in some applications this will not
be reached during the normal operating cycle and hence
the transient problem must be solved.
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Numerical solution is required in all except the sim-
plest (e.g., one-dimensional) examples and the obvious
way to proceed is to use numerical simulation [5] — i.e.,
to step in time solving at each step for the instantaneous
temperature field (nodal temperatures). However, this is
very time consuming, particularly if many cycles of
heating are to be analyzed.

An alternative method can be developed when the
governing equations and boundary conditions of the
problem are linear. In this case, the temperature field at
the end of a cycle must be a linear function of the
corresponding field at the beginning of the cycle and of
any reservoirs with which the system exchanges heat
(e.g., the ambient temperature) during the cycle. If the
system is discretized by the finite element or finite dif-
ference method, both initial and final states are defined
in terms of a finite number of nodal temperatures and
hence this linear relationship takes the form of a matrix
equation. If the corresponding matrix can be deter-
mined, the matrix transfer method, well known in
structural mechanics [6], can then be used to determine
the evolution of the temperature during subsequent cy-
cles and also permits a direct solution for the steady
state.
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Nomenclature

C,M transfer matrices
hi,h, heat transfer coefficients

k thermal diffusivity

m number of independent thermal reservoirs
n number of nodes in the discretization

t time

to time period

T®  vector of nodal temperatures at the beginning
of the pth cycle

TS5 steady state nodal temperatures

x estimated thickness of thermal boundary layer

(0 reservoir temperatures

Trmm  computing time using the transfer matrix
method

Tsimulation
computing time using simulation
w frequency of periodic heating

2. The transfer matrix method

We suppose that the temperature field at the begin-
ning of the pth cycle is defined by the n-vector of nodal
temperatures T®, where n is the number of nodes.
During one cycle, various boundaries of the system ex-
change heat with m reservoirs at temperatures O
(k =1,m) during the several parts of the cycle. The
nodal temperatures at the end of the cycle 7% must be
a linear function of T® and the @,. This relation can be
written in the general linear form

% = MTY) + CO, (1)

where @ is the vector of reservoir temperatures @, M is
an n X n matrix and C is an n X m matrix.

If the matrices M and C could be determined, Eq. (1)
could be used sequentially to determine the nodal tem-
peratures T, after any number of heating cycles. Also,
the steady periodic state T5 could be determined di-
rectly since we would then have

TV = 70 = 758 (2)
and hence
(M-DIT* =-Co (3)

from Egs. (1) and (2), where [ is the identity matrix.
2.1. Determining the transfer matrices

The matrices M and C can be determined by making
(n+m) linearly independent simulations of a single
cycle. For example, if we simulate a single cycle with
initial and boundary conditions

7% =6, 6:=0, (4)

where J;; is the Kronecker delta, the nodal temperatures
at the end of the cycle, T,-(l> will define the jth row of M.
Similarly, if we use the conditions

TI(O) = 05 @k = 5/{/7 (5)

7'V will define the /th row of C.

It is relatively easy to automate the process of making
this sequence of runs and extracting the corresponding
matrix elements. The computational effort involved is
equivalent to that of performing a direct simulation for
(n+m) cycles and hence it will be cost effective if the
process under consideration involves a larger number of
cycles. However, notice that once the transfer matrices
have been determined, they permit the response of the
system to be obtained for a range of initial and
boundary conditions, whereas a direct simulation would
require that the program be restarted from zero if any of
these conditions were to change.

3. Example

To illustrate the use of the method, we consider the
simple two-dimensional example of Fig. 1, which also
shows the finite element mesh used. The edge CD is
assumed to make thermal contact with a reservoir whose
temperature alternates between 300 and 1300 K with a
period f, = 3.5 ms, as shown in Fig. 2. The heat transfer
coefficient at this boundary is assumed to be /#; = 4000
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Fig. 1. Geometry of the example problem.
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Fig. 2. Time history of the temperature of the reservoir con-
tacting the boundary CD.

W/m? K. The edge AB exchanges heat with a reservoir
at 300 K through a heat transfer coefficient #, =
25 W/m’ K. The remaining boundaries are insulated
and the initial temperature is assumed to be uniform and
equal to 300 K.

The periodic boundary condition causes significant
variation in temperature during each cycle in a thin
thermal boundary layer near to the edge CD, necessi-
tating the use of an appropriately refined mesh in this
region. The boundary layer is so thin that the tem-
perature field is almost one-dimensional in this region
and hence the layer thickness can be estimated from the
simpler problem of a half plane x > 0 whose surface
temperature varies sinusoidally as 7(0,7) = T cos(wt).
In this case, the steady periodic solution is [7]

T(x,t) = Toexp ( —x 260_k) cos (wt - x\/g) (6)

where k is the thermal diffusivity. The temperature os-
cillation has decayed to less than 1% of T; within a
distance

2k
XZZTM/E:Z nkty, (7)

where we note that w = 2n/#. For the present problem,
using the material properties of steel (k = 10.9 mm?/s),
this gives a value y =~ 0.7 mm. A relatively coarse mesh
is sufficient outside this region. We used a biased mesh
adjacent to the edge CD giving seven elements in the
range 0 < x < y and a smallest element (immediately
adjacent to CD) of width 0.026 mm (0.037y).

Fig. 3 shows the temperature at several nodes near to
the heated surface during the first few cycles. These re-
sults were obtained by direct numerical simulation,
using the finite element package ABAQUS and the mesh
of Fig. 1. The temperature shows a typical oscillatory
behavior superposed on a gradual increasing tempera-
ture which penetrates to greater depths as time pro-
gresses.

The same finite element program was used to deter-
mine the transfer matrices, using the strategy described
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Fig. 3. Time dependence of the temperature at several on the
line EF during the first few cycles. The distance from the heated
surface is denoted by x.

in Section 2.1. These matrices were then used to deter-
mine the evolution of the temperature at selected nodes
at the same point in successive cycles. The results for the
first 5000 cycles (solid lines) are compared with those of
the direct simulation program (circles) in Fig. 4 for the
points identified as £, F, H in Fig. 1. The agreement is
extremely good as we should expect, since mathemati-
cally the methods are formally equivalent. The only
possible source of computational difference lies in
roundoff errors in the computations.

It was not practical to run the simulation program
much beyond 5000 cycles, since each cycle takes ap-
proximately 2 min on a workstation. However, once the
transfer matrices have been established, the calculation
of additional cycles is extremely rapid. Fig. 5 shows re-
sults for the first 60,000 heating cycles obtained in this
way and show that the results tend asymptotically to a
steady periodic state.
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Fig. 4. Comparison of the results of the transfer matrix method
(solid line) and numerical simulation (circles) during the first
5000 cycles at the points E, F, H in Fig. 1.



1158 S. Fan, J.R. Barber | International Journal of Heat and Mass Transfer 45 (2002) 1155-1158

500 4

o 10 20 30 40 50 60x102
Number of cycles

Fig. 5. Long time evolution of the temperatures at the points
E, F, G, H in Fig. 1.
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Fig. 6. Temperature variation along the line EF at various
points during the steady state cycle.

The steady periodic solution was obtained directly
from the transfer matrices using Eq. (3). Input of these
nodal temperatures into one cycle of the simulation
program then provides the complete steady periodic
solution. Fig. 6 shows the variation along the line EF at
various points during the steady state cycle.

3.1. Numerical efficiency of the method

As explained in Section 2.1, the establishment of the
transfer matrices requires that the simulation program
be run for (m + n) independent cycles of heating, where
n is the number of nodes in the discretization and m is
the number of independent reservoirs. Once the transfer
matrices are known, the matrix operations defined by
Egs. (1) or (2) require very little computational effort. It
follows that the computing time required for the transfer

matrix solution tpyym and the simulation Tgmulation Will be
approximately in the ratio

; (8)

TTMM M+ n

Tsimulation P

where p is the number of cycles of heating to be mod-
eled. For the present example, we used 72 nodes and 2
reservoirs, so the transfer matrix method was over 800
times more efficient than the simulation for the calcu-
lation of 60,000 cycles of heating.

4. Conclusions

The transfer matrix method discussed in this paper
provides a very efficient method for the analysis of linear
periodic heat transfer problems. It is particularly suit-
able for cases where the transient response is required
over a large number of cycles or where the same system
is to be analyzed for several sets of initial or boundary
temperatures.
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